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Abstract

This paper examines the dynamic behavior of a bistable experiment comprised a pendulum and two magnets.

Investigations focus on determining when the oscillations about one equilibrium will overcome an adjacent potential

barrier and escape to a neighboring attractor. Studies identify the parameters of the experimental system before

investigating the generalization of an escape criterion. A specific outcome is the generalization of an energy-based criterion

that can be used to predict escapes for forced and/or parametrically excited systems.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The escape from a potential well is a problem of universal importance in the physical sciences [1]. In fact, a
great number of dynamical systems can be characterized by their likelihood to overcome an adjacent potential
barrier and escape to a neighboring attractor. As an example, consider the following highly disparate
application areas where recent works take aim at understanding the jump response of a Duffing oscillator, the
capsizing of naval vessels, the snap-through buckling of arches, and the bistable regions encountered in atomic
force microscopy [1–5]. Since this abrupt jump in the state of the system can sometimes trigger a catastrophic
event, it becomes necessary to understand the escape phenomenon and establish a criterion to predict when an
escape is likely to occur.

Several researchers have investigated escape problems for systems with quadratic and cubic nonlinearities
[1,2,5–7]. The escape problem complexity has also prompted investigations of basins of attraction
metamorphoses [8,9] and indeterminate bifurcation phenomena [10,11]. In addition to these studies of forced
systems, the presence of indeterminate bifurcations has been discovered in parametrically excited systems [12].
For clarification purposes, we note that parametrically excited systems contain a periodic coefficient in the
governing equation. Related to these past studies is a criterion examined in Ref. [7] for inevitable quasi-steady
escapes. While this work examined the period-one motion of an externally forced oscillator, the escape
criterion has not been investigated for a parametrically excited system. Thus the above prior works serve as the
motivation for the present study where the escape behavior is examined for a parametrically excited system.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic diagram of the experimental system with removable magnets to allow for separate characterization of the pendulum and

magnetic forces.
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Outside of the present application, parametrically excited systems have been studied extensively in the
literature (e.g. see Refs. [13–15]). Some of the methods available for stability analysis are Hill’s method [14,15],
Floquet theory [16–22], and perturbation techniques [15]. In contrast, the present work differs due to the focus
on an energy-based criterion to investigate the loss of stability. More specifically, the interest is in using the
energy criterion to determine when a potential well escape will occur.

This paper investigates a threshold criterion for escapes observed in a parametrically excited system. The
system of interest is a magnetic pendulum subjected to a uniform gravitational field and highly nonlinear
magnetic forces. Asymmetric potential wells are created due to subtle imperfections caused by differences in
the strength of each magnet and imperfections in the relative locations of the magnets with respect to a
ferromagnetic pendulum (see Fig. 1). Numerical and experimental investigations are performed to study
nonlinear behavior of the system. Quasi-steady escapes are then examined for the forced system under the
variation of a single control parameter.

The remaining content of this paper is organized as follows. The next section describes the experimental
apparatus. This is followed by a section that derives the governing equation of motion. The fourth section
describes the experimental parameter identification efforts used to characterize the system’s parameters. The
bifurcation behavior and the basins of attraction are then studied for the unforced system. The fifth section
examines quasi-steady escapes for the parametrically excited system with forcing. We then discuss the
necessary changes to an escape criterion, described in Ref. [7], to account for the escapes observed in the
experimental system.

2. Description of the experimental apparatus

A schematic drawing of the experimental system is shown in Fig. 1. Measurements of the pendulum angular
oscillations were obtained by supplying a constant voltage to a Novatechnik,1 model P2200, low-torque
potentiometer and recording the time-varying voltage drop provided by the potentiometer internal resistor.
Apart from being a low-torque device, an additional unique feature of this potentiometer was an internal
conductive plastic track which provides a uniformly scaled analog voltage (i.e. this feature differs from
the typical wire-wound potentiometer that gives a step change in the voltage). The potentiometer was housed
in a rigid base fixture and connected to a ferromagnetic, 75mm long, threaded rod that was inserted into
a 19mm diameter stainless steel sphere. The mass of the assembled pendulum sphere and rod was measured
to be m ¼ 35 g. The pendulum base fixture was fabricated from aluminum and mounted onto the air bearing
shake table that was connected to an APS Dynamics model 113 shaker (see Fig. 1). Attractive magnetic
forces were created by introducing two neodymium magnets, grade N38, that were mounted on a flat
plate that was constructed to have indexable features. The purpose of the indexing features was to provide
very repeatable positioning of the magnets which were removed and replaced during the parameter
identification process.
1Commercial equipment is identified for completeness and does not necessarily imply endorsement by the author.
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3. Mathematical model

This section derives a math model for the angular oscillations of the horizontally shaken magnetic
pendulum. Fig. 1 shows a pendulum whose pivot point is shaken in the horizontal direction with a sinusoidal
motion of amplitude A and frequency O. The experimental system contains both gravitational and magnetic-
restoring forces which results in the following expression for the potential energy:

UðyÞ ¼ mgLð1� cos yÞ þUmðyÞ, (1)

where m is the pendulum mass, g is the gravitational constant, L is the pendulum effective length, UmðyÞ is
the potential energy associated with the magnets, and y is the angular displacement with reference to the
downward position. An effective length variable, which identifies the position of the center of mass along
the pendulum length, is used in place of the actual pendulum length to account for the distributed mass along
the pendulum rod and attached spherical ball.

The functional form for the potential energy of the magnet is expressed as a polynomial series,

UmðyÞ ¼
â1
2
y2 þ

â2
3
y3 þ

â3
4
y4, (2)

where the coefficients â123 capture the restoring force of the magnets. The kinetic energy of the system is given
by

T ¼ 1
2
m½ðAO cosOtþ L_y cos yÞ2 þ ðL_y sin yÞ2�. (3)

The governing equation for the system can be obtained by inserting Eqs. (1) and (3) into Lagrange’s equation,
which results in

€yþ
c

mL2
_y�

AO2

L
sinOt cos yþ

g

L
sin yþ

1

mL2

qUm

qy
¼ 0, (4)

where c is a linear damping coefficient used to capture the velocity-dependent viscous and magnetic forces; the
nonlinear restoring force of the magnets is given by qUm=qy. At this point, it is worth highlighting the fact that
terms of the order Oðy4Þ and higher have been neglected in the potential energy expression of Eq. (2) but not
uniformly in the other terms of Eq. (4). While one could question whether the higher order terms are necessary
to accurately capture the magnetic-restoring force, this consideration is answered in Section 4.2.
Foreshadowing the results of that section, the approximation defined by Eq. (2) is assumed to be sufficient.
After implementing a consistent level of approximation in Eq. (4), where sin y � y� 1

6
y3 and cos y � 1� 1

2
y2,

the governing equation can be written as

€yþ 2zo_yþ o2yþ gðsinOtÞy2 þ by3 þ
X3
n¼1

any
n
¼ 2g sinOt, (5)

where the constants z, o, and g can be expressed in terms of the previously defined variables as

z ¼
c

2omL2
, (6a)

o ¼

ffiffiffiffi
g

L

r
, (6b)

g ¼
AO2

2L
, (6c)

b ¼ �
o2

6
, (6d)

an ¼
ân

mL2
. (6e)

It is interesting to note that Eq. (5) contains both parametric excitation and external forcing.
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4. Experimental characterization and unforced oscillations

This section describes the experimental and analytical efforts undertaken to identify the magnetic pendulum
model parameters. From the onset of this experiment, it was believed that characterizing the magnetic forces could
be particularly challenging. Hence, the experimental system was built to allow independent characterization of the
magnetic forces and pendulum model parameters. An interesting and unexpected outcome from this approach was
that substantial velocity-dependent effects were observed from the magnets. Upon further investigation, the author
realized that the rate-dependent forces were due to current damping, demagnetization effects, and the results of
Lenz’s Law (i.e. force is proportional to the time rate of change of the magnetic field) [23].

The remaining content for this section divides the parameter identification process into two distinct
stages: (1) the unforced pendulum oscillations, in the absence of the magnetic forces, are studied to obtain
model parameters for the pendulum (i.e. the effective length and mechanical damping); and (2) the fully
assembled system is studied to provide independent characterization of the magnetic forces.

4.1. Identification of pendulum parameters from unforced oscillations

Under the assumption that the magnetic forces have been removed and that the pendulum is unforced
(i.e. g ¼ 0 for the unforced system), the pendulum’s angular oscillations are governed by the following
equation of motion:

€yþ 2mo_yþ o2yþ by3 ¼ 0, (7)

where the parameter m is used to describe the mechanical damping in the absence of magnetic forces. This
equation can be rewritten in a more convenient form for analysis,

€yþ o2y ¼ �f ðy; _yÞ, (8)

where f ðy; _yÞ ¼ 2mo_yþ by3. Following Ref. [15], the method of averaging is applied by assuming a solution of
the form yðtÞ ¼ a cosðotþ fÞ ¼ a cosc, where c ¼ otþ f. This will result in the following expressions for the
slow variations of a and f:

_a ¼
1

2po

Z 2p

0

ðsincÞf ða cosc;�ao sincÞdc ¼ �moa, (9a)

_f ¼
1

2poa

Z 2p

0

ðcoscÞf ða cosc;�ao sincÞdc ¼
3a2b
8o

. (9b)

After substituting b ¼ �o2=6, the amplitude and phase relationships become

a ¼ a0e
�mot, (10a)

f ¼
a2
0

32z
ðe�2mot � 1Þ þ f0, (10b)

where a0 and f0 are constants of integration. If the system is started from rest with an initial angular
displacement of W0, the resulting transient solution becomes

yðtÞ ¼ W0e�mot cos otþ
W20
32m
ðe�2mot � 1Þ

� �
, (11)

which is in agreement with the approximate analytical solution obtained using the method of multiple scales (see
Ref. [24]). Five independent free-fall oscillation tests were used for parameter estimation; these tests were anti-alias
filtered at 20Hz with a Stanford Research Systems, model SR640, low-pass filter and recorded at a sample rate of
300Hz for 10-s time intervals. Using various different start angles, the estimated parameters were averaged over
the total number of records to minimize the influence of experimental noise. Fig. 2 shows a comparison time series
for the fitted parameters and the measured experimental test. It is noted that the experimental and theoretical
results are in good agreement—thus illustrating the accuracy of the estimated parameters. The estimated
parameters for the system were a damping ratio of m ¼ 0:0018 and an effective length of L ¼ 0:0719m.
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Fig. 2. Example overlay of the experimental data (�) onto the approximate analytical solution (solid line) for the identified pendulum

parameters m ¼ 0:0018 and L ¼ 0:0719 ðmÞ.
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4.2. Parametric identification of magnetic potentials

The introduction of the two neodymium magnets alters the potential energy of the system and redefines the basins
of attraction. In particular, multiple stable equilibria solutions were observed during the unforced experimental trials.
During these experiments, several start angles were used to investigate the multiple final equilibrium positions that
were observed to be strongly dependent on subtle changes in the initial conditions—a hallmark of nonlinear systems.
Fig. 3 shows two experimental trials that each reveal a different fixed point attractor.

The energy balance approach of Ref. [25] was used to identify the parameters for the magnetic pendulum. In
an effort to remain brief, we describe only the salient features of this approach. The parameter identification
scheme uses an energy balance between any two times, t1 and t2, which can be expressed as

T12 þU12 ¼ �W D, (12)

where T12 is the change in kinetic energy, U12 is the change in potential energy, and W D is the work due to
energy dissipation over the time interval from t1 to t2. A matrix equation was then formed from Eq. (12) by
balancing the energy over multiple time intervals. Angular velocity measurements were estimated from the
measured angular position using cubic smoothing splines to avoid noise amplification in the signal derivatives
[25–27]. Using more time intervals than the number of unknowns provides enough equations to determine the
system parameters.

The above procedure was applied to 12 experimental trials to estimate the damping and magnetic-restoring
forces. In an effort to check whether the potential energy expressions should contain terms higher than Oðy4Þ,
which is the assumed level of accuracy in the presented approach, magnetic forces were also characterized by
expanding their potential energy expressions up to Oðy6Þ. The results of Fig. 4a present a comparison graph for
these two experimentally identified potential wells. Relatively speaking, both potential energy curves are
comparable, with the largest differences at higher angular displacements. Therefore, it was decided to use the
Oðy4Þ results since comparable levels of accuracy were obtained (see zoom of these results in Fig. 4b).

Table 1 provides a list of all the estimated model parameters. One parameter of particular interest is the
damping coefficient, c, which captures the rate-dependent forces for the entire system. Estimating
the equivalent damping ratio from Eq. (6a), where z ¼ 0:0513, reveals that 97% of the damping was due to
the presence of the magnets.

5. Bifurcations and basins of attraction for the unforced system

During the unforced experimental trials, it was noticed that subtle changes in the pendulum release position
would result in a different final equilibrium. In an effort to study this experimental observation, basins of
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Fig. 3. Each row shows an experimental time history and the phase plane for a single experimental trial. Time histories are shown in

graphs (a) and (c) and phase plane results are shown in graphs (b) and (d). The estimated velocity state was obtained by the application of

cubic smoothing splines (as in Ref. [25]).
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attraction were constructed with numerical simulation. Fig. 5 shows the basins of attraction, generated from
Eq. (4), for a grid of initial conditions. For the angular velocities queried, this diagram confirms the
experimental observation that the final state of the system is highly dependent upon the initial angular
displacement. However, this is only true for start angles far enough away from the equilibria since start angles
close to the equilibria remain trapped within the associated potential well.

The bifurcation behavior of the unforced system was also studied. Specifically, the pendulum’s mass was
used as the control parameter since this could be varied rather easily in the experimental system. The unforced
equations are obtained by setting g ¼ 0 in Eq. (5). This gives the following first-order equation:

_x1 ¼ x2, (13a)

_x2 ¼ �2zox2 � ðo2 þ a1Þx1 � a2x2
1 � a3 �

o2

6

� �
x3
1, (13b)

where x1 ¼ y and x2 ¼
_y. The equation above contains three equilibria located at x2e ¼ 0. The corresponding

x1 locations for each equilibria are

x1e ¼ 0, (14a)

x1e ¼
�3a2 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 �

2
3
ð6a3 � o2Þða1 þ o2Þ

q
6a3 � o2

. (14b)

where a subscript has been added to each state variable to denote the equilibrium location (e.g. the equilibrium
for x1 has been written as x1e). Fig. 6 shows a series of experimental measurements overlaid onto a theoretical
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Fig. 4. Experimentally identified potential energy wells. Graph (a) shows energy well results when potential energy terms on the order of

Oðy6Þ (dotted line) and Oðy4Þ (solid line) are retained in the analyses. Graph (b) is a zoom of the Oðy4Þ energy well, with local minima at

y � 0:415 and �0:520 rad, that is used throughout the rest of this paper.

Table 1

Estimated system parameters.

Symbol Value

m 0.035 kg

L 0.0719m

c 2:17� 10�4 Nms

â1 �0:0481Nm=rad
â2 0:0113Nm=rad2

â3 0:1125Nm=rad3
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bifurcation diagram. Although the mass does not explicitly appear in Eq. (14b), a different mass does result in
different an values—as defined by Eq. (6e). Overall, the experimental measurements show relatively good
agreement with the equilibria predicted by the theoretical model.

6. Escapes in the parametrically excited magnetic pendulum

The experimentally identified energy wells of Fig. 4b provide local minima at y � 0:415 rad and
y � �0:520 rad. This section investigates potential well escapes when the system is initialized at one of these
equilibria and then the oscillation amplitude of an electromagnetic shaker is slowly increased. While almost
linear behavior is observed for relatively small shaker amplitudes, highly nonlinear behavior is observed as the
shaker amplitude is increased. In particular, a sequence of period-doubling bifurcations is shown to trigger a
potential well escape that eventually leads to chaos.
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This section investigates modifying an escape criterion from prior work [7]. Specifically, we have directly
applied this criterion, but were unable to obtain accurate escape predictions. Our focus then shifted to
modifying this criterion to accurately determine the escape threshold for a parametrically excited system. Our
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results indicate that it is critical to include both the subharmonic response and the parametric excitation terms
in the energy calculations to determine the threshold for quasi-steady escapes.
6.1. Periodic and subharmonic motions within each well

The experimental procedure consisted of initializing the magnetic pendulum at one of the unforced
equilibrium conditions and then applying parametric excitation. The excitation frequency was held at a
constant 5Hz, O ¼ 10p rad=s, and the imposed shaker amplitude was gradually increased until an escape
occurred. For relatively low shaker amplitudes, periodic motions were observed within each well. Graphs (a)
and (b) of Fig. 7 provide representative experimental and numerical results of a periodic attractor.

The motion complexity was observed to increase for larger shaker amplitudes. As an example, Fig. 7e gives a
representative time history for an escape that was measured during experimentation. In this graph, subharmonic
oscillations, within the well at y � 0:415 rad, are observed to escape and become trapped in the well centered at
y � �0:52 rad. This abrupt transition in the system behavior is observed to occur for g � 45 ðrad=sÞ2. From the
results presented in Fig. 8a, which are further described in the latter part of this section, the g-value for an escape
is shown to be premature. However, this premature escape behavior can be explained by the fact that the system
becomes very sensitive to the rate of increase in the shaker amplitude. To elaborate, experimentally capturing the
true bifurcation behavior requires quasi-static variation of the control parameter as opposed to the discrete
adjustments that were used in the experimentation. However, further experimentation showed the result of Fig. 7e
was a transient escape which often occurs prior to a quasi-steady escape.

An interesting observation, one that is not obvious from Fig. 7, is that period-doubling bifurcations were
observed for subtle increases in the shaker amplitude. This experimental result was investigated numerically
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and is substantiated with the bifurcation diagram of Fig. 8. This graph shows a sequence of period-doubling
bifurcations that are interrupted by a potential well escape triggered near g � 81 ðrad=sÞ2. Post-escape
oscillations exhibit chaotic behavior prior to a region of period 6 behavior and chaos.

Since this type of abrupt jump in the state of the system can often trigger a catastrophic event, as in the
capsize of a naval vessel, it is essential to develop a criterion that quantifies the threshold for such an escape.
Recognizing this goal, the threshold criterion of Ref. [7] has been augmented to account for the subharmonic
response of the parametrically excited system.

The procedure used to determine an escape under quasi-steady conditions is as follows: (1) the closest stable,
ye, and unstable equilibrium, yu, are identified for the unforced system; (2) the location of the unstable
equilibrium is then used to determine the energy required, Ubðye; yuÞ ¼ UðyuÞ �UðyeÞ, to overcome the
potential energy barrier; (3) the response amplitude and phase relationships, whether determined analytically
or with numerical simulation, are then used to calculate the maximum energy level, Emaxðy; _yÞ ¼ Tð_yÞ þUðyÞ,
of the steady-state oscillation. With regards to the length of time to calculate Emaxðy; _yÞ, the longest period in
the predicted motion should be applied. A quasi-steady escape is predicted when the maximum energy of the
steady-state oscillations rises to the level required to overcome the adjacent potential barrier,
Emaxðy; _yÞXUbðye; yuÞ. The primary difference between this criterion and the one from prior works is the
consideration of response behavior that includes the subharmonic, harmonic, or chaotic behavior of the
system. Furthermore, the parametric excitation term must be included in the calculation of the kinetic energy
to obtain Emaxðy; _yÞ.

Validation results for this threshold criterion are shown in Figs. 8b and 9b. For instance, Fig. 8b shows the
Emax as a function of g for the same data used to construct the stroboscopic samples of the angular
displacement shown in Fig. 8a. For the results of Fig. 8b, a potential well escape is shown to occur once the
value of Emax reaches the threshold criterion Ub ¼ 9:43� 10�4 J which occurs near g ¼ 80:5 ðrad=sÞ2. It is also
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evident that the sequence of period-doubling bifurcations is interrupted due to the escape. In this diagram, the
value of Emaxðy; _yÞ was computed over 10 periods of the forced oscillations. The procedure for the numerical
simulations required slowly and continuously varying the value of g to ensure the presence of steady-state
oscillations. Since g was slowly varied, a constant value was assumed for each reported value of Emaxðy; _yÞ.

When the oscillations originate in the neighboring well, as shown in Fig. 9, the same process is followed for
computing Emaxðy; _yÞ and Ub ¼ 1:71� 10�3 J. As in the previous case, good agreement is obtained between the
proposed threshold criterion and the escape that occurs near g ¼ 48:5 ðrad=sÞ2. A counter-intuitive result can be
observed when comparing Figs. 8b and 9b. In particular, the energy level for an escape to occur is much higher
for the results of Fig. 9b, but an escape is triggered for a much smaller value of g. However, this result is correctly
predicted by the proposed threshold criterion and can be explained by the earlier onset of period doubling.

6.2. Post-escape oscillations

The periodically sampled time histories of Figs. 8 and 9 both show a series of period-doubling bifurcations
that eventually lead to chaotic motion. This same behavior was also observed experimentally and the sample
results from three experimental trials are shown in Fig. 10. These graphs show a 40 s snapshot of the recorded
300 s time history along with the corresponding Poincaré section. Since only angular displacements were
recorded, visualization of the qualitative features of each chaotic attractor required the application of delayed
embedding techniques to reconstruct a topologically equivalent phase space in angular displacement yðtnÞ vs.
delayed angular displacement yðtn þ DtÞ coordinates. Following the methods suggested in Ref. [28], algorithms
were developed to graph the mutual information function for the time series and the same time series shifted
by Dt. The first minimum of the mutual information graph was used as the time shift, or delay, between the
original time series and the yðtþ DtÞ time series that are presented in Fig. 10.
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7. Summary and conclusions

This paper examines the nonlinear behavior of an experimental system. The magnetic pendulum system was
experimentally characterized to determine the shape of the potential energy curve. Basins of attraction were
computed to investigate the observed sensitivity to initial conditions (i.e. two closely spaced initial conditions
may terminate in either potential well). Bifurcations of the unforced system were then studied when using the
pendulum’s mass as the control parameter.

A quasi-steady escape criterion from prior works was augmented to include the influence of parametric
excitation and subharmonic response behavior. Furthermore, it was found that the parametric excitation term
must be included in the calculation of Emaxðy; _yÞ to accurately estimate the instantaneous energy level. The
procedure consists of determining the energy level that the system must obtain to overcome the local potential
barrier and then using the predicted response amplitude and phase relationships to determine if an escape
would occur. Since asymmetry exists in the potential energy curve, separate escape calculations were
required—one for oscillations originating about each stable equilibria. The parametric excitation studies show
a series of period-doubling cascades interrupted by a potential well escape—behavior that is correctly captured
by the aforementioned threshold criterion. Finally, the escapes are shown to transition to chaotic motion at
increased excitation amplitudes.
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